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ABSTRACT 

Infrastructure risk due to fire has been well documented.  In particular, bridges in the urban 

environment are susceptible due to low overhead clearances on overpasses, existing simple spans 

with no redundancy, narrow lane widths, and general alignment congestion.  Although the risk is 

significant, the current AASHTO Bridge Design Specification does not include provisions for 

design due to fire conditions.  As such, this paper considers alternatives for improving the fire 

resistance of steel bridges using both traditional and non-traditional fire protection methods.  In 

this paper, a total of eight parameters are investigated: (1) global section factor (W/D ratio) of 

bridge girder cross-section; (2) thickness of the flange; (3) thickness of the web; (4) steel material 

specification; (5) concrete slab width; (6) concrete slab thickness; (7) thickness of intumescent 

paint; and (8) thickness of SFRM.  It is shown that the temperature domain performance can be 

significantly increased by (1), (3), (7), and (8) while the other parameters are less effective.  The 

recommendations from this research can be readily implemented in both bridge design and retrofit 

scenarios.     

INTRODUCTION 

Steel girder bridges are commonly used for highways, railroads, or footbridges and are 

often designed compositely with a concrete deck slab.  This type of system is used in both long 

and short span applications worldwide and represents an economical bridge engineering solution.  

Bridges are a vital component of the infrastructure that are necessary for public welfare and 

emergency response.  Therefore, their designs should consider the risks associated with extreme 

events, including earthquakes, fire hazards and others.  Fire hazards have not typically been 

considered in bridge design, although it has been well established as design criteria for buildings.  

Lee et al. (2013) conducted a study on bridge failures in which they reviewed 1254 bridge failures, 

1062 of which occurred in North America from 1980 to 2012.  The main cause of failure was 

flooding, accounting for 28.3% of all failures.  Additionally, 2.8% of bridge failures occurred due 

to fire while 1.9% of failures were due to earthquakes.  Earthquakes have long been established as 

design criteria for bridges although they accounted for fewer failures than fire.  Of the failed 

bridges due to fire, 45% were constructed of steel and 50% resulted in a total collapse of the 

https://ascelibrary.org/doi/10.1061/9780784481332.005
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structure (Lee et al. 2013).  Further, the literature has shown that bridges are extremely vulnerable 

to fire hazards (Alos-moya et al. 2014, Kodur et al. 2013, Gong and Agrawal 2015 & 2016, Garlock 

et al. 2012 and Wright et al. 2013).  Since the failure of a bridge creates a public welfare 

disturbance, fire risk needs to be addressed in bridge design practice for critical infrastructure.    

There are extensive building codes for the fire protection of buildings such as the 

International Building Code (IBC) 2015, which follows test procedures from American Society 

for Testing and Materials (ASTM) E119 and Underwriters Laboratories (UL) 263 to design for 

structural fire resistance.  Additionally, the American Society of Civil Engineers (ASCE) included 

Appendix E: Performance-Based Design Procedures for Fire Effects on Structures in the 2016 

edition of ASCE 7: Minimum Design Loads for Buildings and Other Structures (ASCE 2016).  

National Fire Protection Association (NFPA) includes standard codes of practice for fire resistance 

of buildings.  On the other hand, there are no specific fire resistance requirements in The American 

Association of State Highway and Transportation Officials (AASHTO) Bridge Design 

Specifications or other U.S. bridge design standards.  

Bridge fire exposure can originate from hydrocarbon fires caused by the collision of a 

vehicle carrying a large fuel load.  These hydrocarbon fires, detailed in Eurocode and ASTM 1529: 

Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural 

Members and Assemblies, are characterized by a rapid development of high temperatures up to 

1100 °C in about 15 minutes.  Bridges may also be susceptible to lower intensity fires resulting 

from nearby structures, or smaller vehicles, which may be adequately characterized by the ASTM 

E119 fire curve (or Eurocode’s “External” fire), which has historically been used for buildings.   

A range of parameters influencing the fire performance of bridge girders was considered 

and classified as either traditional or non-traditional methods.  Traditional fire protection methods 

are either passive or active.  Active systems include sprinklers and suppression systems, which 

require a sensor network to identify a fire event and mechanical/plumbing systems to provide the 

suppression.  The long-term maintenance and upkeep of these systems combined with low the 

effectiveness of sprinkler and suppression systems outside of compartment fires precludes their 

use in bridges.  Thus, passive systems are more appropriate for bridges and may have lower long-

term maintenance costs.  A common method is the practice of coating members with fireproofing 

materials.  These materials include cementitious coatings, intumescent paints and spray applied 

fire resistive material (SFRM).  Intumescent paints are effective as the coating expands and chars 

upon temperature increase which creates an insulating layer slowing the rate of temperature 

increase of the internal steel member. SFRMs are typically composed of gypsum or cement along 

with other additives.  Their inherent thermal properties provide higher fire resistance than bare 

steel.  Since they are spray applied, detailed features such as bolts and connections can be easily 

covered.  However, in the case of bridge application consideration should be given to the influence 

of external environmental conditions. 

Non-traditional methods of passive protection can also be considered.  Some non-

traditional methods include modifying the geometry of the cross section and using different steel 

specifications to lower the rate of temperature increase.  The geometry of the cross section plays 

an important role in heat transfer since the rate of temperature increase is related to the member 

volume and related element thickness.  By increasing the width or thickness of certain elements in 

the cross section, the temperature increase may be reduced.  Considering different steel 

specifications will change the thermal properties and may lead to lower temperature and a higher 

fire rating.  These methods will be evaluated for degree of effectiveness.   
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The main goal of this paper is to discuss some critical parameters of steel girder bridges 

exposed to fire.  Eight parameters were considered in this study: (1) global section factor (W/D 

ratio) of bridge girder cross-section; (2) thickness of the flange; (3) thickness of the web; (4) steel 

material specification; (5) concrete slab width; (6) concrete slab thickness; (7) thickness of 

intumescent paint; and (8) thickness of SFRM.  The results from (1) are used as a baseline for the 

rest of the parameters to illustrate the improvement in fire performance.  It will be shown that the 

temperature domain performance can be significantly increased from baseline (1) by (3), (7), and 

(8) while the other parameters are less effective.  The recommendations from this research can be 

readily implemented in both bridge design and retrofit scenarios.  

     

METHOD 

 

 The numerical modeling was performed using Abaqus (Dassault Systemes 2013) finite 

element analysis software.  A typical cross-section is shown on Fig. 1, which has a composite 

concrete slab of 128 cm width and 13 cm thickness in addition to the steel beam.  Fig. 2 shows the 

cross-section from the Abaqus model where DC2D4 4-node linear heat transfer elements were 

used for the finite element mesh.  Temperature histories were applied to the outer surfaces of the 

cross-section corresponding to ASTM E119 and Eurocode (CEN 2002) Hydrocarbon fires (Fig. 

3).  Nodal temperatures from the numerical models were compared to rating thresholds from 

ASTM E119 and ASTM E1529 for the E119 and Hydrocarbon fires, respectively.  Table 1 contains 

the threshold temperatures for determining the prescriptive “rating” of the system.  The time until 

these threshold temperatures are reached on the cross-section, either peak nodal temperature, or 

average temperature over the cross-section, determines the “rating” of the system. Ten hot rolled 

cross-sections of carbon steel covering a typical range of weight (W) to heated perimeter (D) ratio, 

W/D, were selected as shown in Table 2.  Depths ranged from 12 to 36 in, while weight ranged 

from 36 to 395 pounds per foot.  W/D ratio is well known to represent the resistance of a steel 

cross-section to temperature increase (Buchanan and Abu 2017).   

 The heat transfer model considers conduction, convection and radiation.  For conduction, 

the heat equation (1) shows that the rate of temperature change is proportional to the thermal 

diffusivity (Bergman et al. 2011).  The thermal diffusivity is a function of the conductivity, specific 

heat, and density which must all be defined for the elements of the cross-section.  The values for 

specific heat and conductivity are adopted from Eurocode (CEN 2004, 2005) and are shown on 

Fig. 4 and Fig. 5, respectively, for both carbon steel and concrete.   

 

  
𝜕𝑇

𝜕𝑡
=α∇2T           (1) 

Where:  

α = thermal diffusivity=
𝑘

𝐶𝑃∗𝜌
 (m2/s) 

 Cp = Specific Heat (Jkg
-1K-1) 

 k = Thermal Conductivity (Wm-1K-1) 

 ρ = Density (kg*m-3) 

 

For convection, the heat flux is given by (2), which depends on a convection coefficient 

and the temperature difference between the fluid and surface (Bergman et al. 2011).  The 

convection coefficients used in the analysis are shown on Fig. 6 (CEN 2002). 
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q
conv.

=h(Tf-Ts)       (2) 

Where: 

 qconv. = convection heat flux (Wm-2) 

 h = convection coefficient (Wm-2K-1) 

 Tf = temperature of the fluid (K) 

 Ts = temperature of the surface (K) 

 

For radiation, the heat flux is given by (3) and depends on the surface emissivity, Stefan-

Boltzmann constant, and the temperature difference between the surface and fluid (Bergman et 

al. 2011).  For the bare steel beam, the emissivity used in the analyses are shown on Fig. 6 

(Kodur et al. 2013).    

 

q
rad

=σ(Ts
4-Tf

4)      (3)  

Where: 

qrad = radiation heat flux (Wm-2) 

ε = emissivity 

σ = Stefan - Boltzmann constant, 5.67e-08 (Wm-2K-4)  

 

The thermal properties used in the analysis have all been defined for the typical cross-

section used for Parameter 1.  Thermal properties will be changed while investigating the 

additional parameters and will be discussed within the results section for those cases.  

 The numerical analysis used in this paper, which matches those used by others (Kodur et 

al. 2013, Cedeno et al. 2011, and Gong and Agrawal 2015), was verified by comparing results to 

experimental data.  The test by Wainman et al. (1987), consisted of heating a steel beam with 

concrete slab in a furnace while four point loads were applied at different locations (1/8, 3/8, 5/8, 

and 7/8 span).  The beam had a span of 4.53 m with steel beam depth of 26 cm and 15 cm flange 

width, and the concrete slab was 64 cm wide by 13 cm thick.  The furnace gas temperature used 

in the test is shown on Fig. 7.  Temperature results are presented for the top flange, bottom flange 

and web for both the experimental and numerical methods.  Good agreement can be seen between 

the two datasets.  Table 3 contains a comparison of the numerical and experimental temperatures 

obtained after 50 min duration.  From Table 3, the maximum error is ~ 7%, which may be 

considered reasonable. In addition, the verification study produced similar results to those 

presented by Cedeno et al. (2011).  Hence the proposed method has been validated for heat transfer 

analysis of steel beams with concrete slabs.   

    

RESULTS AND DISCUSSION 

 

Parameter 1 – Effect of W/D 

 

The first parameter studied is the effect on W/D ratio on the fire rating of the cross-sections 

considering both peak and average temperature thresholds.  Fig. 8 contains the results for all 10 

cross-sections and linear regressions for the peak and average ratings of each fire curve.  It can be 

seen from Fig. 8 that the peak temperature threshold controls for all cases and thus will be the only 

threshold presented for the remainder of this paper.  Also, a strong linear trend can be observed 

from the regressions shown on Fig. 8 with the lowest R20.98.  This is also the case for the other 

results presented in this work thus only the linear regressions will be presented.  The results from 
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the E119 fire show that typical unprotected steel bridge girders are expected to have rating from 

about 15 to 35 minutes.  On the other hand, with a hydrocarbon fire, the expected rating is only 

about 5 to 10 minutes.  For comparison, a similar system in a building may require a rating of 1-3 

hours, depending on occupancy, to satisfy the Code requirements.  The low rating for the 

hydrocarbon fire underscores the vulnerability of typical steel girder bridges.  Using the regression 

equations on Fig. 8, W/D ratio can be used as design criteria which is commonly done in buildings 

to achieve a certain rating.  Hence selecting a steel girder with the same section properties (Zx, Ix, 

etc.) but a higher W/D will inherently increase the fire resistance.    

             

Parameters 2 & 3 – Thickness of the Flange and Web 

 

 Parameter 2 investigates the effect of the flange thickness on the rating of the cross-section.  

Using the cross-sections from Parameter 1 as a baseline, the thickness of the flange is increased 

based on the original flange thickness.  Increase of “+1” is made by increasing the flange 

thickness by 6.35 mm for tf ≤ 25.4 mm, 12.7 mm for 25.4 mm < tf < 50.8 mm, and 19.05 mm for 

tf  ≥ 50.8 mm.  The flange thickness was also increased by “+2”, simply twice the “+1” increase.  

Fig. 9 contains the results for the rating based on the “Original” model (Parameter 1 results) and 

the “+1 Modified” and “+2 Modified” models.  It can be seen from the figure that there is only 

a slight increase in the rating for both the E119 and Hydrocarbon fires when modifying the flange 

thickness and basing ratings on the threshold temperatures specified.  For the E119 fire, the higher 

W/D sections show a slight increase but with W/D less than about 2, it is negligible.  For the 

Hydrocarbon fire there is negligible increase across the entire W/D range.        

 Parameter 3 investigates the effect of the web thickness (tw) on the rating of the cross-

section.  The procedure is the same as Parameter 2, where the “Original” models correspond to 

those from Parameter 1.  Increase of “+1” is made by increasing the web thickness by 6.35 mm 

for tw ≤ 25.4 mm, 12.7 mm for 25.4 mm < tw.  The web thickness was also increased by “+2”, 

simply twice the “+1” increase.  Fig. 10 contains the results for the rating based on the “Original” 

model (Parameter 1 results) and the “+1 Modified” and “+2 Modified” models.  From Fig. 10, 

a significant increase in rating across the entire W/D range for both fire types can be seen.  Thus, 

increasing the web thickness is more effective than increasing the flange thickness.  This is because 

the fire is applied to the entire exposed surface of the beam and since the web is the thinnest 

element in a rolled section, it has the lowest resistance to temperature change.  Fig. 11 shows the 

temperature histories for the elements of the cross-section of a W36x135 under hydrocarbon fire 

curve.  Fig. 11 shows that the web has higher temperatures than both bottom and top flanges.  

Hence the web controls for the ratings shown for Parameter 1 and increasing its thickness is an 

effective means of increasing the rating.  This result is useful since increasing the web thickness 

is possible in both new bridge design and retrofit scenarios.  Fig. 12 presents web thickness vs fire 

rating for all the cross-sections considered.  The results are more useable in this fashion since the 

rating may be readily determined based on the web thickness alone.  If the web thickness is 

increased such that it exceeds the thickness of the flanges, particularly the bottom flange, the web 

may not be the controlling element.  This may be easily seen from Fig. 11 since the bottom flange 

temperature is close to the web temperature.  For the W36x135 cross-section, the flange is only 

30% thicker than the web, which is on the lower end for rolled sections.  Thus the bottom flange 

thickness must also be considered when increasing the web thickness so it does not become the 

controlling element.  The results for Parameter 3 may be readily used to improve fire performance 

by increasing the web thickness.  
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Parameter 4 – Steel Material Specification 

 

 Parameter 4 investigates changing the steel specification from carbon steel to weathering 

steel (4a), fire resistant (FR) steel (4b) and austenitic steel (4c).  Weathering steel is commonly 

used in bridge construction today with austenitic steel being less common.  Fire resistant steels are 

still relatively new and are rare in bridge designs.  Since all three of the materials are viable 

alternatives for traditional carbon steel, this parameter will investigate if simply changing the 

material type has an impact on the fire rating. 

 In order to perform the heat transfer analysis, new temperature dependent values for 

specific heat and conductivity are required for the three new materials.  The emissivity and 

convection coefficients are modeled identical to Parameter 1.  Figs. 13 and 14 contain the plots for 

weathering steel.  Although mechanical properties under elevated temperature are available in 

Garlock et al. (2013), the authors were unable to locate literature on the thermal properties above 

600 °C (Cor-ten 2014).  Due to this lack of published thermal properties they were extrapolated to 

1200 °C in order to cover the entire range of fire temperatures (Fig. 14).  It can be seen from the 

Figs. 13 & 14 that both conductivity and specific heat for weathering steel closely matches the 

behavior of carbon steel.  The exception is the spike seen in the carbon steel plots at ~ 700 °C, due 

to the phase change.  For FR steel, we used the “590 MPa Nippon Steel” (Mizutani et al. 2004) 

properties which are shown on Figs. 15 to 16 and are taken from (Ding et al. 2004).  The 

conductivity and specific heat trends are again similar to carbon steel.  One of the main benefits of 

FR steel, although not included in this analysis, is that the yield strength reduces at a slower rate 

under elevated temperatures compared to carbon steel.  Analyses in the strength domain will 

undoubtedly see some benefit to the use of FR steel over carbon steel.  For austenitic steel we used 

AISI A316 with thermal properties shown on Figs. 17 and 18, taken from Mills et al. (2004).  The 

conductivity is dramatically lower than carbon steel below about 900 C.  Figs. 19 – 20 present the 

results for FR and austenitic steel.  The results for weathering steel are not shown because the 

results are so close to the carbon steel values that the trendlines are overlapping (similar to FR, 

Fig. 18).  In Fig. 18 austenitic steel has a lower rating than carbon steel despite its lower 

conductivity below 900 °C.  This can be explained by examining the thermal diffusivity which is 

shown in Eq. (1) to be proportional to the rate of temperature change and shown on Fig. 21.  The 

diffusivity of carbon steel dips below austenitic steel and remains below during the 649 °C to 704 

°C threshold temperatures for Hydrocarbon and E119 fires, respectively.  This dip is explained by 

the dramatic increase in specific heat of carbon steel (Fig. 3) due to the phase change.  This 

illustrates that the results may be somewhat sensitive to the specific heat curve specified in the 

analysis.  There are other models accepted in the literature in addition to the Eurocode model used 

in this paper, see Kodur et al. (2010) for a comparison of the other models.  The research team 

concluded that by considering only the temperature domain rating, there is no benefit from 

changing the material specification and that the comparison may be affected by the specific heat 

model used for carbon steel.      

     

Parameter 5 & 6 – Concrete Slab Dimensions 

 

 For Parameters 5 and 6 the concrete slab thickness and width were modified, respectively.  

The slab thickness was increased from 13 cm to 15.2 cm (“+1”) and then to 18.3 cm (“+2”).  

The slab width was increased from 128 cm to 152 cm (“+1”) and then to 183 cm (“+2”).  From 
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Fig. 22 and 23 there is little effect on the ratings when changing slab thickness or width.  This 

confirms that the heat transfer is dominated by the steel cross-section and the slight increase in 

rating that is shown can be attributed to an increase in the heat sink effect provided by the concrete 

slab.  Neither parameter is effective in increasing the fire resistance.     

      

Parameters 7 & 8 – Passive Protection – Intumescent Paint, SFRM 

 

 Passive protection has been used for decades in building structures and has proven to be a 

cost-effective fire protection method (Buchanan and Abu 2017).  Although active protection 

measures, such as sprinklers and suppression systems, may be applied to building applications, the 

lack of a defined compartment in a bridge fire scenario precludes their use.  Thus, passive 

protection may be the only form, of the existing technologies, applicable for bridges.  Spray applied 

fire resistive material (SFRM) are compounds composed of gypsum and cement which are applied 

the surface of the steel bridge girder.  Intumescent paint (I.P.) expands with heat exposure thus 

increasing volume and lowering the density of the protective paint.  Their inherent thermal 

conductivity, ~2 orders lower than steel, slows the rate of temperature increase and thermally 

insulates the underlying steel.              

  The specific heat and thermal conductivity for I.P. is taken from the study by 

Krishnamoorthy & Bailey (2009).  They determined the conductivity for a variety of proprietary 

paints and presented equations for the average values.  These equations, however, were not 

reported to enough significant figures and therefore updated regression expressions with sufficient 

accuracy are given by Eq. 4 and 5. 

 

For 20°C < T < 350°C: 

  k = (-1.62 x 10-8) T3 + (1.201 x 10-5) T2 – 0.002902T + 0.2759  (4) 

 

For 350°C < T < 1000°C: 

k = (-4.11 x 10-10) T3 + (1.3402 x 10-8) T2 – 0.0011196T + 0.28682  (5) 

 

 Specific heat and conductivity for the SFRM are taken from Bentz and Prasad (2007) 

considering a high-density SFRM, which is most appropriate for exterior steel components 

exposed to the environment.  Low-density SFRM is undesirable for bridge applications due to its 

lower durability under exposure.  Thermal conductivity and specific heat are shown on Fig. 24 and 

25, respectively, for both SFRM and I.P.  In addition to the thermal properties of the coating, the 

emissivity shown in Fig. 6 must be revised since the fire is now acting on the surface coatings 

instead of the bare steel.  Table 4 gives the new values for emissivity defined over the cross-section.  

The emissivity of the bottom flange is based on literature for I.P. (Krishnamoorthy & Bailey, 2009) 

and the assumption that SFRM is largely a cementitious material.  The emissivity of the web and 

top flange are then varied to account for impact of the fire over the height of the member (Kodur, 

et al., 2013).   

For this parameter, the required minimum thickness of SFRM and I.P. vs W/D ratio to 

achieve a 1-hour rating under the hydrocarbon fire is presented.  SFRM and I.P. coatings are 

applied only to the steel surface and not to the concrete slab in this study.  The thicknesses are 

determined by iteration, until the threshold temperatures are met at 1-hour.  Figs. 26 and 27 contain 

the regression equations for the required thickness, over three ranges of W/D: “low”, “mid”, and 

“high”.  The limits for each range is given below (6): 
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W/Dlow<1.274; 1.274≤W/Dmid≤ 2.036; W/Dhigh>2.036  (6) 

 

Hence both SFRM and I.P. provide effective means of increasing the bridge fire rating to 1-hr.  

Passive protection may be applied to both new and existing bridges, making them a plausible 

method of increasing the fire resistance of critical infrastructure.  Additional research on the 

durability of these materials should also be considered. 

   

CONCLUSION 

 

 This paper presents a review of the thermal properties required to determine a bridge fire 

rating in the temperature domain.  Various parameters have been considered in order to determine 

which are effective in increasing the fire rating of a bare steel bridge girder based on prescribed 

temperature thresholds.  It has been shown that of the non-traditional parameters, increasing the 

web thickness, which is the thinnest element in the cross-section, is effective for both new design 

and retrofit scenarios.  Traditional methods of fire protection including SFRM and I.P. coatings 

have also been considered and shown to be effective.  This paper presents minimum thickness 

requirements to achieve a 1-hr rating under a hydrocarbon fire.  These recommendations are valid 

for both new bridge designs and retrofits since passive protection can be applied in both cases.  It 

has been shown that alternative steel materials and changing the concrete slab thickness have 

negligible impact on the temperature domain rating of the structure.     
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FIGURES 

 
Fig. 1. Typical Cross-Section     Fig. 2. Abaqus model of cross-section 
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Fig. 3. E119 and Hydrocarbon Fire Curves     Fig. 4. Specific Heat  

 
 

Fig. 5. Conductivity   Fig. 6. Emissivity and Convection Coefficients 

 
 Fig. 7. Numerical analysis validation    Fig. 8. Parameter 1 - Rating vs. W/D 

 

hc=50 W/m2K 

(Hydrocarbon) 

 

 (E119) 
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Fig. 9. Parameter 2 - Rating vs. W/D   Fig. 10. Parameter 3 - Rating vs. W/D 

 
Fig. 11. Temp. vs. time for W36x135  Fig. 12. Rating vs. web thickness         

 
Fig. 13. Specific Heat – Weathering Steel   Fig. 14. Conductivity – Weathering Steel 

 
 Fig. 15. Specific Heat – FR Steel  Fig. 16. Conductivity – FR Steel 
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 Fig. 17. Specific Heat – Austenitic Steel  Fig. 18. Conductivity – Austenitic Steel 

       
 Fig. 19. Parameter 4b - Rating vs. W/D Fig. 20. Parameter 4c - Rating vs. W/D 

 
 Fig. 21. Diffusivity comparison      Fig. 22. Parameter 5 - Rating vs. W/D 

 
  Fig. 23. Parameter 6 - Rating vs. W/D Fig. 24. Conductivity - SFRM and IP 
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      Fig. 25. Specific Heat - SFRM and IP          Fig. 26. Parameter 7 – IP Thickness vs. W/D 

 
 Fig. 27. Parameter 8 – SFRM Thickness vs. W/D 

 

TABLES 

Table 1. Rating Criteria 

Criteria ASTM E119  ASTM E1529 

Average Temp. 593° C 538°C 

Peak Temp.  704°C 649°C 

 

Table 2. Test Matrix 

Beam W/D Ratio h/tw Ratio bf/2tf Ratio tf (m) tw (m) 

W16x36 0.690 48.10 8.12 0.0109 0.0075 

W27x84 1.030 52.70 7.78 0.0163 0.0117 

W36x135 1.274 54.10 7.56 0.0201 0.0152 

W36x160 1.500 49.90 5.88 0.0259 0.0165 

W36x194 1.800 42.40 4.81 0.0320 0.0194 
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W36x247 2.036 40.10 6.11 0.0343 0.0203 

W27x235 2.394 26.20 4.41 0.0409 0.0231 

W36x330 2.679 31.40 4.49 0.0470 0.0259 

W36x395 3.166 26.30 3.83 0.0559 0.0310 

W12x230 3.468 7.56 3.11 0.0526 0.0328 

 

Table 3. Temperatures at 50 minutes (°C), numerical vs. experimental results 

 

 

 

 

 

Table 4. Emissivity for SFRM and I.P. Coatings 

Surface Emissivity - SFRM Emissivity - I.P. 

Concrete Slab 0.3 0.425 

Top Flange  0.385 0.425 

Web 0.643 0.625 

Bottom Flange 0.9 0.825 
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